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Abstract

The applications of automatic speech recognition
(ASR) systems are proliferating, in part due to re-
cent significant quality improvements. However,
as recent work indicates, even state-of-the-art
speech recognition systems – some which
deliver impressive benchmark results, struggle to
generalize across use cases. We review relevant
work, and, hoping to inform future benchmark
development, outline a taxonomy of speech
recognition use cases, proposed for the next
generation of ASR benchmarks. We also survey
work on metrics, in addition to the de facto
standard Word Error Rate (WER) metric, and
we introduce a versatile framework designed to
describe interactions between linguistic variation
and ASR performance metrics.

1 Introduction

The applications of ASR systems are many and varied;
conversational virtual assistants on smartphones and
smart-home devices, automatic captioning for videos,
text dictation, and phone chat bots for customer sup-
port, to name a few. This proliferation has been en-
abled by significant gains in ASR quality. ASR quality
is typically measured by word error rate (WER), or, in-
formally, the Levenshtein distance between the target
transcript and the machine-generated transcript (Lev-
enshtein, 1966; Wang et al., 2003)—see Section 3.

Current state-of-the-art accuracy is now in
low-single-digits for the widely used Librispeech
benchmark set (Panayotov et al., 2015), with e.g.
Zhang et al. (2020) achieving a WER of 1.4%.
However, as Szymański et al. (2020) have pointed out,
overall, our current ASR benchmarks leave much to
be desired when it comes to evaluating performance
across multiple real-world applications. Typical
benchmark sets beyond Librispeech include TIMIT
(Garofolo et al., 1993), Switchboard (Godfrey et al.,
1992), WSJ (Paul and Baker, 1992), CALLHOME
(Canavan et al., 1997), and Fisher (Cieri et al., 2004).1

1For an overview of such datasets and benchmarks, see

These benchmark sets cover a range of speech use
cases, including read speech (e.g. Librispeech), and
spontaneous speech (e.g. Switchboard).

However, with many ASR systems benchmarking
in the low single digits, small improvements have
become increasingly difficult to interpret, and any
remaining errors may be concentrated. For example,
for Switchboard, a considerable portion of the
remaining errors involve filler words, hesitations and
non-verbal backchannel cues (Xiong et al., 2017;
Saon et al., 2017).

Furthermore, achieving state-of-the-art results on
one of these sets does not necessarily mean that an
ASR system will generalize successfully when faced
with input from a wide range of domains at inference
time: as Likhomanenko et al. (2020) show, “no single
validation or test set from public datasets is sufficient
to measure transfer to other public datasets or to
real-world audio data”. In one extreme example,
Keung et al. (2020) show that modern ASR architec-
tures may even start emitting repetitive, nonsensical
transcriptions when faced with audio from a domain
that was not covered at training time—even in cases
where it would have achieved perfectly acceptable
Librispeech evaluation numbers. Inspired by Good-
hart’s law, which states that any measure that becomes
a target ceases to be a good measure, we argue that
as a field, it behooves us to think more about better
benchmarks in order to gain a well-rounded view of
the performance of ASR systems across domains.

In this paper, we make three contributions. First, we
provide a taxonomy of relevant domains, based on our
experience developing ASR systems for use in many
different products, with the goal of helping make next-
generation benchmarks as representative as possible
(Biber, 1993). Second, we argue that optimizing only
for WER, as most current benchmarks imply, does not
reflect considerations that are ubiquitous in real-world
deployments of ASR technology: for example, pro-

https://github.com/syhw/wer_are_we. Addition-
ally, FAIR recently released the Casual Conversations dataset
intended for AI fairness measurements (Hazirbas et al., 2021).

https://github.com/syhw/wer_are_we
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duction considerations such as latency and compute re-
sources can imply additional interrelated optimization
objectives. We survey relevant work on additional met-
rics that can be used to measure ASR systems. Third,
we describe what metadata would be useful in next-
generation benchmark data sets in order to help ana-
lyze the interaction between linguistic variation and
performance of ASR systems—for example, to mea-
sure how well an ASR system holds up in the face of
sociolinguistic variation within the target language, or
second-language accents, as in e.g. Feng et al. (2021).

2 ASR Use Cases
With ASR use cases spanning many applications and
tasks, ideally ASR systems would be robust to various
classes of variation in speech input. For example, an
ASR system which provides automatic captions for
video meetings would recognize words from many
different semantic fields, adaptable to the topic of the
meeting. Speech characteristics may also vary across
domains: for example, the speech style used when
dictating text messages differs from the style of a
group conversation, where speakers may occasionally
talk over each other.

An ideal benchmark set would include what we will
call ‘horizontal’ and ‘vertical’ variation. Horizontal
challenges refer to a wide variety of scenarios where
ASR may be used, while vertical challenges involve
e.g. diversity in topics, encoding formats, and others.

2.1 Horizontals: ASR applications
ASR application domains can be roughly subdivided
based on the number of speakers, the mode of speech
(spontaneous vs. prepared speech) and the intended
recipient (human or device). An ideal benchmark
set would cover as many of these horizontals as
possible—e.g. through merging existing benchmark
sets, as does Likhomanenko et al. (2020), and adding
additional data to cover any gaps.

Dictation Text dictation is a popular use case
of ASR systems — one of the first successful
commercial applications with broad appeal. This
feature serves both convenience and accessibility,
allowing users to enter text without manually typing.
Dictation tends to involve relatively slow speech,
typically that of a single speaker, who is aware
they are interacting with a device, and who may
consciously modify their speech patterns to facilitate
device understanding (Cohn et al., 2020). Dictation
may have applications in many fields. One with many
idiosyncratic challenges is medical dictation, where
ASR systems are used to help medical personnel
take notes and generate medical records (Miner et al.,
2020; Mani et al., 2020). This poses challenges in

the support of domain-specific jargon, which we will
discuss in subsection 2.2. In a related application,
dictation practice is sometimes used by language
learners, often in combination with a pronunciation
feedback system (McCrocklin, 2019). In other
contexts, transcription of dictated audio may be
part of a composite pipeline, such as in automatic
translation, where the initial transcript feeds a
subsequent system for translation to another language.

Voice Search and Control Voice search and other
conversational assistant products enable users to
access information or invoke actions via spoken
input. Similar to dictation, audio in such settings
is typically single-speaker, with human-to-device
characteristics. Compared to dictation, queries may
be somewhat shorter, and may contain proper nouns
(e.g. place names or business names). Semiotic-class
tokens such as times (Sproat et al., 2001) are also
more common in this setting. A related type of
human-to-device speech is interactive voice response
(IVR), where callers to customer support may first
interact with a voice chatbot, which can help gather
information prior to redirecting the call, or potentially
resolve issues itself. (Inam et al., 2017).

Voicemails, Oration, and Audiobooks While
dictation users may modify their speech based on the
knowledge that they are dictating directly to a device,
ASR systems may also be used to help provide
transcriptions for voicemail messages (Padmanabhan
et al., 2002; Liao et al., 2010), parliamentary speeches
(Gollan et al., 2005; Steingŕımsson et al., 2020),
and so on. Such settings, while still typically
single-speaker, include artifacts of spontaneity—e.g.
fillers or hesitations like ‘uh’, backchannel speech,
as well as disfluencies, false starts, and corrections
(Jamshid Lou and Johnson, 2020; Mendelev et al.,
2021; Knudsen et al., 2020). Transcribing audiobooks
includes elements of dictation and oration: due to
their read-speech nature, audiobooks typically contain
less spontaneity than typical human-to-human speech
(Igras-Cybulska et al.), but they are usually more
natural than human-to-device speech.2

Conversations and Meetings In settings such as
human-to-human conversations, the task of the ASR
system typically involves transcribing spontaneous
speech among several participants within a single
audio recording. For example, meeting transcription

2Transcription of audiobooks is a primary goal of Librispeech
(Panayotov et al., 2015), one of the most common benchmarks
for ASR today, even though practically speaking, transcribing
audiobook audio is not a common task for most real-world ASR
systems—given that audiobooks are typically produced based
on an existing ‘transcription’, namely the ground-truth written
text of the book.
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can help to improve accessibility of video meetings,
or may serve to document conversations (Kanda
et al., 2021); see e.g. Janin et al. (2004); Carletta et al.
(2005) for relevant data sets. Another use case for
transcriptions of human-to-human conversations is
customer-agent conversations, as well as other types
of telephony, which can help monitor the quality of
phone-based customer service.

Podcasts, Movies and TV Podcast transcription
forms a related, and fast-growing, application area,
with recent data sets including Clifton et al. (2020).
Podcast transcription is in some ways similar to the
long-standing task of automatically transcribing in-
terviews, e.g. to help make them more accessible, as
in various oral-history projects (Byrne et al., 2004).
Finally, another similar use case is the transcription
of motion pictures, including documentaries, which
may require increased robustness to non-speech audio,
such as music and special effects. Spontaneous speech
is common to these human-to-human, multi-speaker
settings, with fillers such as ‘uh’, overlap, and interrup-
tion between speakers. We draw a distinction between
movie subtitling and TV closed captioning. Subtitling
is an ’offline’ task in that the entire audio is avail-
able to the ASR system at recognition time, and the
setting allows for multiple passes, including human
post-editors. Compare to closed captioning, where
streaming ASR processes a live broadcast with tight la-
tency constraints. Additionally, these two modes have
different transcription conventions and formatting re-
quirements. Subtitles often contain non-verbal cues
that support comprehension for hearing impaired, and
are optimized for readability. Conversely, closed cap-
tions are often projected in upper case with fewer con-
straints, such as line breaks, to denote speaker turns.

2.2 Verticals: Technical challenges

ASR applications do not just differ in the style of
speech. Other dimensions include: the semantic
content of the input speech (a lecture about nuclear
physics involves very different terminology than
a phone conversation to set up a car maintenance
appointment), the audio encoding format, and sample
rate, among others. Again, the ideal benchmark
should cover as many of these factors as possible.

Terminology and Phrases ASR systems applied
to a wide range of domains need to recognize
hundreds of thousands, if not millions, of distinct
words. Such systems typically involve a language
model trained on large volumes of text from multiple
sources. To benchmark an ASR system’s capability
across a wide range of topics, test sets could include
terms and phrases from many different fields:

consider medical terminology (e.g. ‘ribonucleotides’),
historical phrases (e.g. ‘Yotvingians’), and many more.
ASR systems should also be savvy to neologisms
(e.g. ‘doomscrolling’), although, admittedly, the
fast-changing nature of neologisms and trending
phrases makes this particularly challenging. Another
area that deserves special attention in measurements
is loanwords, which may have pronunciations that
involve unusual grapheme-to-phoneme correspon-
dences; such words may even necessitate personalized
pronunciation learning (Bruguier et al., 2016).

Speed Recordings where speech is significantly
faster or slower than average may pose additional
recognition challenges (Siegler and Stern, 1995;
Fosler-Lussier and Morgan, 1999), so the ideal bench-
mark should also cover samples with various speech
rates. This is particularly important for paid services,
where users sometimes artificially speed up the record-
ings or cut out easily detectable portions of silence in
order to reduce costs. Such processing can introduce
unnatural shifts in pitch and add confusion to the
punctuation at speaker turn, and sentence boundaries.

Acoustic Environment The setting in which
the input audio was recorded (real-life or phone
conversation, video call, dictation) can also materially
impact ASR performance, and settings with high
amounts of background noise can be particularly
challenging. Ideally, test sets should be available
to measure how robust an ASR system is in the
face of background noise and other environmental
factors (Park et al., 2019; Kinoshita et al., 2020). The
entertainment domain contains a large amount of
scenes with background music, which often have
lyrics that are usually not meant to be transcribed.
Even call center conversations sometimes contain
hold music which is not part of the payload of the call.

Encoding Formats Lastly, different audio encod-
ings (linear PCM, A-law, µ-law), codecs (FLAC,
OPUS, MP3) and non-standard sample rates such as
17 kHz may affect recognition quality, and should be
represented (Sanderson and Paliwal, 1997; Hokking
et al., 2016). The same holds for audio that has been
up- or down-sampled, e.g. between 8 kHz typical for
telephony and 16 kHz or above, for broadcast media.

2.3 Practical Issues

We argue that the more horizontal and vertical areas
are covered by a benchmark, the more representative
it will be, and hence the more appropriate for
measuring ASR progress. There are some practical
matters that are also important to consider when
creating the ideal benchmark.
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Transcription Conventions Creating transcrip-
tions of human speech in a consistent manner can
be unexpectedly challenging: for example, should
hesitations like ‘uh’ be transcribed? How should
transcribers handle unusual cases like the artist
‘dead mouse’, which is written as ‘deadmau5’ by
convention? And if a speaker says ‘wanna’, should
the transcription reflect that as such, or should the
transcriber transcribe that as ‘want to’? The answer
to such questions will depend on the downstream use
context (e.g. a dialog system, where hesitations may
be useful, or an email message, where they may need
to be omitted instead). For example, while in closed
captioning or podcast transcriptions omitting repeti-
tions, disfluencies, and filler words (e.g. “like”, “kind
of”) is considered desirable, this might not be appro-
priate for some other ASR domains such as subtitling.
Defining and applying a comprehensive set of tran-
scription conventions, as e.g. Switchboard (Godfrey
et al., 1992) and CORAAL (Kendall and Farrington,
2020), is critical in building high-quality data sets. It
is also important to detect and correct transcription
errors in annotated corpora (Rosenberg, 2012).

Perhaps the most important choice in such transcrip-
tion conventions is whether to adopt ‘spoken-domain’
transcriptions, where numbers are spelled out in words
(e.g. ‘three thirty’), or ‘written-domain’ transcriptions,
where they are rendered in the typical written form
(‘3:30’). Many data sets use spoken-domain transcrip-
tions only, but often in real-world ASR deployments
it is valuable for readability and downstream usage
(e.g. by a natural-language understanding system), to
have fully-formatted, written-domain transcripts, as
described by O’Neill et al. (2021)—who also provide
a written-domain benchmark data set.

Representativeness For any ASR test set, at least
two considerations come into play: first, how closely
does the test set approximate reality; and second, is
the test set sufficiently large to be representative?
For example, test sets that are intended to measure
how well an ASR system deals with speech with
background noise should have a realistic amount
of background noise: not too little, but also not too
much—e.g. to the point that even human listeners
stand no chance of transcribing the audio correctly.
Adding noise artificially, as established e.g. by the
Aurora corpora (Pearce and Hirsch, 2000; Parihar
and Picone, 2002), does not take into account the
Lombard effect. In terms of size, analyses akin to
Guyon et al. (1998) are helpful to ensure that any
change is statistically significant; we are not aware
of much work along these lines for ASR systems
specifically, but it seems like it would be worthwhile
to explore this area more. The ultimate goal should

be to increase the predictive power of error metrics.

3 Metrics: WER and Beyond

Assume, for the sake of argument, that an impressive
selection of test sets has been collected in order to
create our imagined ideal next-generation benchmark
for ASR, covering many use cases, technical
challenges, and so on. The performance of an ASR
system could now be measured simply by computing
a single, overall WER across all the utterances in this
collection of test sets—and a system that yields lower
WER on this benchmark could be said to be ‘better’
than a system with higher WER.

However, in a real-world deployment setting, the
question of which system is ‘best’ typically relies on
an analysis of many metrics. For example, imagine a
system with a WER of 1.5% but an average transcrip-
tion latency of 2500 milliseconds, and another system
that achieves 1.6% WER but a latency of only 1250
milliseconds: in many settings, the second system
could still be more suitable for deployment, despite
achieving worse WER results. Of course, ‘latency’
itself is not a well-defined term: sometimes the mea-
surement is reported as the average delay between the
end of each spoken word and the time it is emitted by
the ASR system, while in other cases the measure is
based only on the first or the last word in an utterance.
Neither is well-defined in presence of recognition
errors. Yet another kind of latency is end-to-end
latency, involving everything between the microphone
activity and the final projection of results, including
network overhead and optional post-processing like
capitalization, punctuation etc. A “pure” ASR latency
metric ignores those and focuses on the processing
time of the recognizer, while latency in the context
of voice assistant commands may consider the delay
before successful recognition of a command, which
might sometimes precede the actual end of utterance.
In this section, we describe how, much like latency,
even WER itself has many nuances, and we point to
other metrics, beyond WER and latency, that can be
considered account when measuring ASR systems.

3.1 WER
The workhorse metric of ASR is the Word Error
Rate, or WER. Calculating WER is relatively easy on
spoken-domain transcriptions with no formatting (e.g.
‘set an alarm for seven thirty’) but quickly becomes
a nuanced matter when processing written-domain
transcriptions—for example, if the ground truth is
provided as ‘Set an alarm for 7:30.’ with capitalization
and punctuation, is it an error in WER terms if the
system emits lowercase ‘set’ instead of uppercase
‘Set’, as given in the ground truth? Typically, for
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standard WER calculations in such scenarios, capital-
ization and word-final punctuation is not considered
to be a factor, and other metrics are calculated for
fully-formatted WER—e.g. case-sensitive WER,
where ‘set’ vs ‘Set’ would be considered an error.

WER can also be calculated on only a subset of
relevant words or phrases: for example, it may be
helpful to compute separate error rates for different
kinds of semiotic classes, such as spoken punctuation,
times, or phone numbers—as well as for different
semantic areas, such as relevant domain terminology
vs. generic English words. The assessment of ASR
quality on rare phrases is yet another issue—average
WER does not always adequately reflect how well an
ASR system picks up rare yet important words, sug-
gesting it may be valuable to know WER for common
and less common words. A related approach is to use
precision-recall, e.g. as Chiu et al. (2018) do for med-
ical terminology. Such ‘sliced’ approaches can help
provide insight into the recognition quality of words or
phrases that are particularly salient in a given setting.
For example, if a system that is intended for use in
a voicemail transcription setting achieves 3% overall
WER, but it mistranscribes every phone number, that
system would almost certainly not be preferred over
a system that achieves 3.5% overall WER, but that
makes virtually no mistakes on phone numbers. As
Peyser et al. (2019) show, such examples are far from
theoretical; fortunately, as they show, it is also possi-
ble to create synthetic test sets using text-to-speech
systems to get a sense of WER in a specific context.
Standard tools like NIST SCLITE3 can be used to
calculate WER and various additional statistics.

Importantly, it is possible to calculate the local
WER on any level of granularity: utterance, speaker
turn, file, entire recording etc. The average WER
alone, weighted by the number of words, is not
sufficient to describe the shape of the distribution
over the individual local measurements. Given two
ASR systems with identical WERs, we almost always
prefer the one with the lower standard deviation, as
it reduces the uncertainty w.r.t. the worst case. A
more accurate metric that samples the shape of the
distribution consists of percentiles (e.g. 90, 95 or 99)
that are more suitable to provide an upper bound.
Additionally, reporting the standard deviation allows
researchers to judge whether an improvement in
WER is significant or just a statistical fluctuation.
The same argument holds true for latency.

Finally, WER can also be calculated on not just the
top machine hypothesis, but also on the full n-best
list, as in e.g. Biadsy et al. (2017).

3https://www.nist.gov/itl/iad/mig/tools

3.2 Metadata about Words
Correctly transcribing speech into text is the most
critical part of an ASR system, but downstream use
cases may require more than just a word-by-word
textual transcription of the input audio. For example,
having per-word confidence scores can be helpful
in dialog systems (Yu et al., 2011); having accurate
timestamps at the word level is essential in many
application of the long form domain, such as
closed captioning, subtitling and keyword search;
having phonemic transcriptions for every word
enables downstream disambiguation (e.g. when the
transcription gives ‘live’, did the user say the adjective
[lıv] or the verb [laıv]); and emitting word timings to
indicate where each word appeared in the audio can
be important for search applications, especially for
longer recordings. The ideal ASR benchmark would
also make it possible to verify this metadata: for
example, if it is possible to use forced alignment to
infer where in the audio words appear, and to check
how accurately an ASR system is emitting word
timings (Sainath et al., 2020a). speaker diarization is
yet another type of of metadata that can be emitted at
a per-word or per-phrase level, for which independent
benchmarks already exist (Ryant et al., 2021).

3.3 Real-Time Factor
A general metric for the processing speed is the
real-time factor (RTF), commonly defined as the ratio
between the processing wall-clock time and the raw
audio duration (Liu, 2000). Streaming ASR systems
are required to operate at an RTF below one, but in
applications that do not require immediate processing
an RTF over one might be acceptable. As with WER
and latency, RTF samples form a distribution, whose
shape is important in understanding the behavior in
the worst case. The process of finding the most likely
hypothesis in ASR (often referred to as “decoding” for
historical reasons) requires an efficient exploration of
the search space: a subset of all possible hypotheses.
The larger the search space, the slower the search,
but the more likely is the recognizer to find the
correct hypothesis. A small search space allows for
quick decoding, but often comes at the cost of higher
WER. It is common to report an RTF vs WER curve
which shows all possible operating points, allowing
for mutual trade off. Note this definition operates
with the wall-clock time, thus ignoring the hardware
requirements. It is common to normalize the RTF by
the number of CPU cores and hardware accelerators.

3.4 Streaming ASR
For ASR systems that stream output to the user while
recognition is ongoing, as in many voice assistant

https://www.nist.gov/itl/iad/mig/tools
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and dictation applications, additional metrics will be
useful, e.g. measuring the stability of partial results,
which reflects the number of times the recognizer
changes previously emitted words while recognizing
a query (Shangguan et al., 2020). A related dimension
is quality of the intermediate hypotheses: a streaming
system that emits highly inaccurate intermediate
hypotheses can yield a jarring user experience, even
if the final hypothesis achieves an acceptable WER.
This is particularly important in combination with
a downstream application like machine translation
that can be very sensitive to corrections in partial
hypotheses (Ansari et al., 2020).

Yet another factor is streaming latency, e.g. how
quickly partials are emitted (Shangguan et al., 2021),
and more generally, the delay between the end of the
user’s input and the finalized transcription (Sainath
et al., 2020b; Yu et al., 2021). The accuracy of
the endpointer module can significantly affect this
latency: endpointers need to strike the right balance
between keeping the microphone open while the user
may still continue speaking (e.g. if the user pauses
briefly to collect their thoughts), while closing it
as soon as the user is likely to be done speaking,
and a number of relevant endpointer metrics can be
calculated, as in e.g. Li et al. (2020).

3.5 Inference and Training
Latency is influenced by many factors beyond the
quality of the endpointer: for example, the number
of parameters in the ASR model, the surrounding
software stack, and the computational resources
available will impact the duration of the recognition
process for an audio recording, in both streaming
and non-streaming - batch recognition settings.
Compressing models can help them run faster, and in
more settings (Peng et al., 2021), although the impact
of shrinking models should be measured carefully
(Hooker et al., 2020a,b).

Beyond inference, training may also be worth
benchmarking in more detail: factors such as the
number of parameters in the model, the model
architecture, the amount of data used, the training
software, and the hardware available will influence
how long it takes to train an ASR model using a given
algorithm. Benchmarks such as MLPerf (Mattson
et al., 2020) do not yet incorporate speech recognition,
but this may be worth exploring in the future.

3.6 Contextual Biasing
Certain phrases or words are sometimes expected in
dialogue contexts (e.g. ‘yes’ or ‘no’), along with par-
ticular types of words (e.g. brand names in the context
of shopping). In such cases, ASR systems may al-

low for contextual biasing to increase the language
model probability of relevant words or phrases (Alek-
sic et al., 2015). Measuring contextual biasing typ-
ically involves evaluating a relevant test set twice:
once with, and once without the contextual biasing
enabled (the default behavior). Even when contextual
biasing is enabled, it will typically be desirable for
the system to continue to recognize other words and
phrases without too much of an accuracy impact, so
that recognition results remain reasonable in the event
that the input does not contain the words or phrases
that were expected—typically anti-sets will be used, as
described by Aleksic et al. (2015). Contextual biasing
plays a key role in classical dialogue systems like IVR.

3.7 Hallucination

In some cases, ASR models can hallucinate transcrip-
tions: e.g. providing transcriptions for audio even
where no speech is present, or simply misbehaving
on out-of-domain utterances (Liao et al., 2015; Keung
et al., 2020). Intuitively, this type of errors should
be reported explicitly as the “insertion rate”, which is
calculated as part of the WER anyway. However, inser-
tion errors are rather rare and do not stand out strongly
in presence of speech and natural recognition errors.

Measuring whether an ASR system is prone to
such hallucinations can be done by running it on test
sets from domains that were unseen at training time.
In addition, it is possible to employ reject sets which
contain various kinds of audio that should not result
in a transcription: for example, such reject sets may
cover various noises (e.g. AudioSet Gemmeke et al.
(2017)), silence, speech in other languages, and so on.

A related topic is adversarial attacks, when a partic-
ular message is ‘hidden’ in audio in a way that humans
cannot hear, but which may deceive ASR systems into
transcribing in an unexpected way; measuring robust-
ness to such issues would be desirable, but it remains
an active area of research—much like the creation of
such attacks more broadly (Carlini and Wagner, 2018).

3.8 Debuggability and Fixability

Finally, one aspect of ASR systems that tends to be im-
portant for real-world deployments, but which is hard
to quantify in a numeric metric, is how easy it is to
debug and fix any misrecognitions that may arise. For
example, if a new word such as ‘COVID-19’ comes
up which is not yet recognized by the system, it would
be preferable if adding such a new word could be
done without necessitating a full retrain of the system.
While quantifying this property of ASR systems is
hard, we believe that the degree to which it is easy to
debug and fix any ASR system is worth mentioning.
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4 Demographically Informed Quality
As previously discussed, the ideal benchmark for ASR
systems would cover as many horizontals and verticals
as possible, and would involve various kinds of met-
rics beyond just WER. Another important dimension,
however, would be the availability of demographic
characteristics, and analyzing the metrics based on
such characteristics. Such demographic characteris-
tics may correlate with linguistic variation—for ex-
ample, non-native speakers of English may have an
accent showing traces of their native language—which
may in turn impact ASR performance. Having demo-
graphic characteristics can help produce analyses like
the one reported by Feng et al. (2021), who analyzed
differences in recognition performance for different ac-
cents, age ranges, and gender within an ASR system.

The ideal benchmark set, then, should include
sufficient metadata to run similar analyses, enabling
developers to understand how their system behaves
when processing various accents or dialects; to
see whether factors like gender and age influence
recognition performance in their system. Linguistic
variation may take many different shapes, including:

• phonetic differences, e.g. vowel realizations that
are specific to a given accent

• phonological differences, e.g. various number
of phonemes in different dialects of a language

• lexical differences, e.g. region-specific terms

• syntactical differences, e.g. double-negatives

• voice quality differences, e.g. pitch differences,
which are correlated with parameters such as
gender and age (Liao et al., 2015)

Fortunately, several data sets already exist with
relevant demographic tags for many utterances, e.g.
Mozilla Common Voice (Ardila et al., 2020) which
offers public data sets across many languages with
dialect and accent tags. There are also academic data
sets produced by sociolinguists, such as CORAAL
for AAVE (Kendall and Farrington, 2020), ESLORA
for Galician Spanish (Barcala et al., 2018), the Corpus
Gesproken Nederlands for Dutch (van Eerten, 2007),
and others. Such corpora provide a useful blueprint
for providing such metadata, and we believe that it
would be valuable for similar tags to be available for
as many other data set as possible. As Andrus et al.
(2021) show, at times it will likely be difficult to get
the demographic metadata that is needed, but still, get-
ting such data wherever possible is important—as they
put it, “what we can’t measure, we can’t understand”.

Even where demographic information is already
present in ASR evaluation sets, it can be a valuable

to conduct an analysis of the target user base for a de-
ployed ASR system in order to ensure that all relevant
tags are available. For example, if a data set has labels
for four distinct accents, but the target user base is
known from sociolinguistic research to use six distinct
accents, this gap will not necessarily be evident when
running an analysis of any possible differences among
the four accents for which tags are available. It is
important to understand the sociolinguistic character-
istics of the target user base, and to cover as many of
these properties as possible. Given that language has
almost infinite variation as you zoom in—in the ex-
treme, everyone has a slightly different voice—this is
a task that requires careful sociolinguistic judgement
and analysis, calling for interdisciplinary collaboration
between linguists and developers of ASR systems.

Even when a rich set of tags is available, it can
be difficult to interpret the results. We describe a
simple, metric-independent population-weighted
visualization framework designed to evaluate ASR
systems based on such demographic metadata. Our
approach supports the different language variations
outlined above, and we propose this analyses as a
valuable addition to future benchmarks.

4.1 Population-Weighted Slicing Framework

Factors like accents (native or non-native), dialects,
gender, and others can result in linguistic variation,
and this may in turn impact ASR performance. Thus
it can be valuable to calculate WER, latency, and
other metrics not just on a data set as a whole, but

s

Figure 1: Examples of WER sliced into groups A, B, and
C, with the width of the bars reflecting relative sizes of
those groups.
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also to slice metrics based on such meta-linguistic
parameters.

Such sliced metrics can be used to determine any
performance gap between groups, and if so, what
efforts may need to be undertaken to shrink such
gaps. The ideal test set should be representative
of the target user base, but as this may be hard to
achieve at data collection time, it can make sense to
re-weight any metrics based on real-world population
statistics: for example, imagine a scenario where
98% of the recordings in a data set come from
native speakers, with the remaining 2% coming from
non-native speakers. If the target deployment setting
involves more like 15% non-native speech, the metrics
obtained over the 2% slice of the data set coming from
non-native speakers should carry 15% of the weight.

To make such analyses easier, we propose subdivid-
ing all speakers into mutually exclusive groups based
on relevant linguistic or demographic criteria. For ex-
ample, consider a scenario where the real-world popu-
lation is subdivided into 3 mutually exclusive groups:
group A (60% of the population), group B (30%), and
group C (10%). The two subplots of Figure 1 visual-
ize examples of evaluations of two ASR models for
slices corresponding to these groups, with the WER
scores represented by the height of the bars, and the
width of the bars reflecting the size of the groups.

Even in the actual test data set, group A covers
80% of the test data, with groups B and C accounting
for 10% each (i.e. under-representing group B and
over-representing group A), this population-weighted
framework provides an intuitive way to address
this imbalance, and understand how ASR systems
perform in the face of linguistic diversity. The average
WER of the system can be calculated as an average of
all WER scores across population groups, weighted
according to the size of those groups—which
may differ from the WER obtained by simply
calculating the WER on the actual data set, as we
have re-weighted based on the real-world distribution.

Importantly, while the average weighted WER is a
useful metric, the full distribution should still be under-
stood: continuing the example depicted on Figure 1,
the average WER for both scenarios in this case would
be 104, but the disparity between the various groups
in the plot where group C achieves a WER of 19.3%
is clearly much bigger in one scenario than another.

Given WER measurements for several groups of
speakers, we should also measure the disparity of the
ASR performance across various groups. In a simpli-
fied way, one could calculate the difference between
the best-performing and the worst-performing groups,

4Top subplot: 6.5*0.6 + 13.9*0.3 + 19.3*0.1 = 10; bottom
subplot: 8.9*0.6 + 11.4*0.3 + 12.4*0.1 = 10;

but see Mitchell et al. (2020) for a general discussion
of ML fairness metrics. While the WER gap in the
best-group and the worst-performing group for the
scenario depicted on the second subplot of Figure 1
is 3.5 absolute points, the gap is 12.8 absolute points
for the distribution on the first subfigure—despite
these two systems having the same average WER,
one system is clearly more consistent than another.

Slicing can be based on just a single parameter, such
as accent, gender, or age, but in reality, speakers are
likely to fall into several categories at once. Therefore,
it may make sense to look at intersectional groups: for
example, ASR performance of 20-30 years old female
speakers of Chicano English from Miami. Obtaining
such rich metadata, however, may be challenging.
Also, the more groups we intersect, the stronger the
effect of data sparsity becomes: it may be challenging
to fill every bucket with enough samples to obtain
solid statistics and to control for all other variables not
considered. At any rate, as long as mutually exclusive
groups can be defined—whether based on a single pa-
rameter or in an intersectional way—this framework
can help provide a more thorough understanding of
various ASR metrics. Weighting by population also
allows re-balancing potentially unbalanced test sets,
and gives insight into what kinds of ASR performance
would be encountered by different groups.

The goal of this approach is to generate new
insights into the ASR accuracy for each slice without
making assumptions about the causal interaction
between the underlying latent variables. The
analytical methods we discuss here are much more
detailed than what is commonly employed for ASR
system evaluation nowadays, but this level of detail is
more usual in the field of variationist sociolinguistics,
suggesting potential for future collaborations (Labov,
1990; Grama et al., 2019).

4.2 Defining slices

To evaluate the ASR systems in a framework that we
are proposing, it is crucial to define representative and
mutually exclusive slices. While the classification we
suggest in this section is by no means exhaustive, it
can be used as a starting point.

Regional language variation Many languages
have regional language variation. For example, in the
United States alone, there are 3 main regional groups
of dialects: the Inland North, the South, and the
West (Labov, 1991), with multiple cities developing
their own regional language variants. Such regional
variants may involve regional phonology (‘get’
rhymes with ‘vet’ in the North, and with ‘fit’ in the
South), and even significant lexical and syntactic
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differences (‘going/planning to’ can be expressed as
‘fixin’ to’ in the South). Aksënova et al. (2020) has
shown how such regional variation can be explored,
and how it can impact ASR performance. Ideally,
then, as many regional variants as possible should be
covered by the ideal benchmark for a given language.

Sociolects Along with regional differences, there
may also also linguistic diversity introduced by speak-
ers of various sociolects: in American English, one
might think of AAVE, Chicano (Mexican-American)
English, and others. For example, AAVE—covered
by the CORAAL data set (Kendall and Farrington,
2020)—has distinctive syntactic constructions such
as habitual be (‘She be working’) and perfective done
(‘He done run’), along with systematic phonological
differences (Wolfram, 2004). And even within
a single sociolect such as AAVE there might be
linguistic diversity (Farrington et al., 2020). Sociolects
may impact ASR quality (Koenecke et al., 2020), and
it would therefore be desirable for benchmarks to
cover as many sociolects as possible.

L2 background Speech produced by non-native
(L2) may reflect some characteristics of their native
(L1) language (Bloem et al., 2016), making it
important to measure the impact of L2 accents on
ASR accuracy. One relevant data set for English is
the GMU Speech Accent Archive Weinberger (2015),
which collects such data for L2 speakers of English.

Gender, age, and pitch Recognition performance
may vary depending on the gender or age of the
speaker (Liao et al., 2015; Tatman, 2017; Tatman and
Kasten, 2017; Feng et al., 2021). In some cases, as
in Common Voice (Ardila et al., 2020; Hazirbas et al.,
2021), self-reported metadata is available. Where
such information is not available, it may make sense
to fall back to a proxy analysis based on pitch—which
is known to be correlated with factors such as age
and gender—in order to understand whether there
are recognition accuracy differences for various pitch
buckets, as in Liao et al. (2015).

Speech impairments Accuracy rates of standard
ASR systems may also degrade for speech produced
by people with speech impairments. Recent work has
investigated ways to collect relevant data (Grill and
Tučková, 2016; Park et al., 2021), enabling analyses
of ASR systems in this area. However, given the high
degree of variability in this space, a more robust path
at least for the near-term future may be designing per-
sonalized ASR systems for people with non-standard
speech (Shor et al., 2019). Beyond speech impair-
ments, voice technologies could bring benefits to

people with various types of diseases and impairments
such as Alzheimer’s, Parkinson’s, and hearing loss.

5 Conclusion

The ultimate goal of benchmarking should be the
ability to predict how well an ASR system is going
to generalize to new and unseen data. In the previous
sections we have argued that a single aggregate
statistic like the average WER can be too coarse-
grained for describing the accuracy in a real-world
deployment that targets multiple sociolinguistic slices
of the population. Ideally, the insights generated
by the proposed analysis would be actionable, from
the composition of the training data to fine-grained
twiddling with a clear objective function.

Before we conclude, we should point out that
any benchmark that implemented even a fraction
of the metrics outlined above would yield rich
amounts of information—which will likely pose
challenges in terms of organizing, presenting, and
understanding all this material. Model report cards,
as outlined by Mitchell et al. (2019), may be a
natural way to capture this information for an ASR
system—although we would suggest calling them
system report cards instead, given that most ASR
systems do not consist solely of a single monolithic
model. Given the sheer amount of variation in the
ways in which people speak, and a large number
of technical factors, measuring ASR systems is a
complicated task. Today’s benchmarks clearly leave
room for improvement, whether it is through covering
more horizontal domains (different kinds of speech),
measuring the impact of cross-cutting vertical issues
(e.g. factors like background noise), using more
metrics than just WER (e.g. latency), and including
demographic characteristics. We hope that our survey
of these areas, and the simple population-weighted
visualization framework we introduced, can help
improve future benchmarks—not just for English,
but also for the thousands of other languages spoken
in our world today. This will clearly be a long-term
journey, but it will be very important for the field as
a whole to find ways to measure ASR systems better
as speech recognition research continues to advance.
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Steintór Steingŕımsson, Starkadur Barkarson, and Gun-
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